CHAPTER 4: CIRCUIT THEOREMS

4.1 Linearity Property

- Linearity is the property of an element describing a linear relationship between cause and effect.
- Linearity property is a combination of the homogeneity (scaling) and the additivity properties.
- Scope of study - limits to resistors
- Homogeneity property:

If the input is multiplied by a constant, then the output is multiplied by the same constant.

From Ohm's law,

$$
v=i R
$$

If the current is increased by a constant k , then the voltage increases correspodingly by k .

$$
k i R=k v
$$

\rightarrow refer to homogeneity property.

- Additivity property:

The response to a sum of inputs is the sum of the responses to each input applied separately.

Voltage-current relationship of a resistor

$$
v_{1}=i_{1} R \quad v_{2}=i_{2} R
$$

then applying $\left(i_{1}+i_{2}\right)$ gives

$$
v=\left(i_{1}+i_{2}\right) R=i_{1} R+i_{2} R=v_{1}+v_{2}
$$

\rightarrow additivity property

- Thus, resistor is a linear element.
- Does the power relation is linear?

Consider the circuit as shown in Figure 4.1

Figure 4.1
When current i_{l} flows through resistor R,

$$
p_{1}=i_{1}^{2} R
$$

When current i_{2} flows through resistor R,

$$
p_{2}=i_{2}^{2} R
$$

If current $\left(i_{1}+i_{2}\right)$ flows through resistor R, $p_{3}=\left(i_{1}+i_{2}\right)^{2} R=R i_{1}^{2}+R i_{2}^{2}+2 R i_{1} i_{2} \neq p_{1}+p_{2}$
\rightarrow the relationship between power and voltage (or current) is nonlinear.

- Example:

For the circuit as shown in Figure 4.2, find I_{0} when $v_{s}=12 \mathrm{~V}$ and $v_{s}=24 \mathrm{~V}$.

Figure 4.2
Applying KVL to the two loops,

$$
\begin{align*}
& 12 i_{1}-4 i_{2}+v_{s}=0 \tag{a}\\
& -4 i_{1}+16 i_{2}-3 v_{x}-v_{s}=0 \text { but } v_{x}=2 i_{1} \\
& \therefore-10 i_{1}+16 i_{2}-v_{s}=0 \tag{b}
\end{align*}
$$

(a) $+(\mathrm{b})$,

$$
\begin{align*}
& 2 i_{1}+12 i_{2}=0 \\
& i_{1}=-6 i_{2} \tag{c}
\end{align*}
$$

(c) into (a),

$$
-76 i_{2}+v_{s}=0
$$

$$
i_{2}=\frac{v_{s}}{76}
$$

When $v_{s}=12 \mathrm{~V}$,

$$
I_{0}=i_{2}=\frac{12}{76} \mathrm{~A}
$$

When $v_{s}=24 \mathrm{~V}$,

$$
I_{0}=i_{2}=\frac{24}{76} \mathrm{~A}
$$

showing that when the source value is doubled, I_{0} doubles.

- Exercise:

Assume that $V_{0}=1 \mathrm{~V}$ and use linearity to calculate the actual value of V_{0} in the circuit of Figure 4.3.

Figure 4.3

4.2 Superposition

- A way to determine the value of a specific variable (voltage or current).
- Superposition - determine the contribution of each independent source to the variable and then add them up.
- The idea of superposition rests on the linearity property.

The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each endependent source acting alone.

- Two main issues in superposition:
(i) One independent source is considered at a time while all other independent sources are turned off. This implies that we replace every voltage source by 0 V (or a short circuit) and every current source by 0 A (or an open circuit).
(ii) Dependent sources are left intact because they are controlled by circuit variables.
- Steps to aplly Superposition principle:
(i) Turn off all independent sources except one source. Find the output (voltage or current) due to that active using the previous techniques in Chapter 2 and 3.
(ii) Repeat step 1 for each of the other independent sources.
(iii) Find the total contribution by adding algebraically all the contributions due to the independent sources.
- Example 1:

Use the superposition theorem to find v in the circuit as shown in Figure 4.4

Figure 4.4
Since there are two sources, let

$$
v=v_{1}+v_{2}
$$

where v_{1} and v_{2} are the contribution due to 6 V voltage source and the 3 A current source respectively.

To obtain v_{l}, set the current source to 0 A as shown in Figure 4.5.

Figure 4.5
Applying KVL,

$$
12 i_{1}-6=0
$$

$$
i_{1}=0.5 \mathrm{~A}
$$

$$
\therefore v_{1}=4 i_{1}=2 V
$$

To obtain v_{2}, set the voltage source to 0 V as shown in Figure 4.6

Figure 4.6

Using current division,

$$
\begin{aligned}
& i_{3}=\frac{8}{4+8}(3)=2 \mathrm{~A} \\
& \therefore v_{2}=4 i_{3}=8 \mathrm{~V}
\end{aligned}
$$

Thus,

$$
v=v_{1}+v_{2}=10 \mathrm{~V}
$$

- Example 2:

Find i_{0} in the circuit in Figure 4.7 using superposition

Figure 4.7
The circuit in Figure 4.7 involves a dependent source, which must be left intact.
We let,

$$
i_{0}=i_{0}^{\prime}+i_{0}^{\prime \prime}
$$

where i_{0}^{\prime} and $i_{0}^{\prime \prime}$ are due to the 4 A current source and 20 V volatge source respectively.

To obtain i_{0}^{\prime}, we turn off the 20 V source as shown in
Figure 4.8

Figure 4.8
Apply mesh analysis,
For loop 1:

$$
i_{1}=4 \mathrm{~A}
$$

For loop 2:

$$
-3 i_{1}+6 i_{2}-i_{3}-5 i_{0}^{\prime}=0
$$

For loop 3,

$$
-5 i_{1}-i_{2}+10 i_{3}+5 i_{0}^{\prime}=0
$$

At node 0,

$$
i_{3}=i_{1}-i_{0}^{\prime}=4-i_{0}^{\prime}
$$

From those equations, we get

$$
\begin{aligned}
& 3 i_{2}-2 i_{0}^{\prime}=8 \\
& i_{2}+5 i_{0}^{\prime}=20
\end{aligned}
$$

Thus,

$$
i_{0}^{\prime}=\frac{52}{17} \mathrm{~A}
$$

To obtain $i_{0}^{\prime \prime}$, we turn off the 4 A current source as shown in Fogure 4.9

Figure 4.9
For loop 4, using KVL

$$
6 i_{4}-i_{5}-5 i_{0}^{\prime \prime}=0
$$

For loop 5:
and

$$
\begin{aligned}
& -i_{4}+10 i_{5}-20+5 i_{0}^{\prime \prime}=0 \\
& i_{5}=-i_{0}^{\prime \prime}
\end{aligned}
$$

From these equations, we get

$$
\begin{aligned}
& 6 i_{4}-4 i_{0}^{\prime \prime}=0 \\
& i_{4}+5 i_{0}^{\prime \prime}=-20
\end{aligned}
$$

$$
\therefore i_{0}^{\prime \prime}=-\frac{60}{17} \mathrm{~A}
$$

Thus,

$$
i_{0}=-\frac{8}{17} \mathrm{~A}
$$

4.3 Source Transformation

- A tool to simplify circuits.
- Definition:

A source transformation is the process of replacing a voltage source v_{s} in series with a resistor R by a current source i_{s} in parallel with a resistor R, or vice versa.

Figure 4.10

- Source transformation also applies to dependent sources.
- Two main issues in source transformation theorem:
(i) The arrow os the current source is directed toward the positive terminal of the volatge source (refer to Figure 4.10).
(ii) Source transformation is not possible when R $=0$, which is the case with an ideal voltage source. Similarly, an ideal current source with

$R=\infty$ acnnot be replaced by a finite voltage source.

- Example 1:

Use source transformation to find v_{0} in the circuit in Figure 4.11

Figure 4.11
Transform the current and voltage sources to obtain the circuit,

Figure 4.12
Combine 4Ω and 2Ω resistors $\rightarrow 6 \Omega$.

Transform the 12 V voltage source,

Figure 4.13
Combine 3Ω and 6Ω resistors in parallel $\rightarrow 2 \Omega$. Combine 2 A and 4 A current source $\rightarrow 2 \mathrm{~A}$,

Figure 4.14
Use current division,

$$
i=\frac{2}{2+8}(2)=0.4 \mathrm{~A}
$$

and

$$
v_{0}=8 i=8(0.4)=3.2 \mathrm{~V}
$$

- Example 2:

Find v_{x} in Figure 4.15 using source transformation.

Figure 4.15

Transform the dependent current source and 6 V independent voltage source,

Figure 4.16
Combine the 2Ω resistors in parallel $\rightarrow 1 \Omega$ resistor which is parallel with 3 A current source.

Transform the 3 A current source,

Figure 4.17
Applying KVL,

$$
-3+5 i+v_{x}+18=0
$$

Applying KVL to the loop containing only the 3 V voltage source, 1Ω resistor and ν_{x} yields,

$$
\begin{aligned}
& -3+i+v_{x}=0 \\
& \therefore v_{x}=3-i
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& 15+5 i+3-i=0 \\
& i=-4.5 \mathrm{~A} \\
& \therefore v_{x}=3-(-4.5)=7.5 \mathrm{~V}
\end{aligned}
$$

4.4 Thevenin's Theorem

- Sometimes, a particular element is variable (called load) while other elements are fixed.

Figure 4.18

- If the variable element is changed, the circuit has to be analyzed all over again.
- Thevenin's theorem replaces the fixed part of the circuit with an equivalent circuit.

Figure 4.19
Note: The circuit to the left of the terminals $a-b$ is known as the Thevenin equivalent circuit.

> Thevenin's theorem states that a linear twoterminal circuit can be replaced by an equivalent circuit of a voltage source $V_{T H}$ in series with a resistor $R_{T H}$, where $V_{T H}$ is the open-circuit voltage at the terminals and $R_{T H}$ is the input or equivalent resistance at the terminals when the independent sources are turned off.

- Suppose the circuits in Figure 4.18 and 4.19 are equivalent (they have the same voltage-current ralation at their terminal).
- If the terminals $a-b$ are made open-circuited, no current flows, so that the open-circuit voltage across the terminal a - b in Figure 4.18 must be equal to the voltage source $V_{T H}$ in Figure 4.19, since the two circuits are equivalent.
Thus,

$$
V_{T H}=v_{o c}
$$

Figure 4.20

- Again, with the load disconnected and terminal $a-b$ open-circuited, we turn off all independent sources.
- The input resistance (or equivalent resistance) of the dead circuit at the terminal a-b in Figure 4.18 must be equal to $R_{T H}$ in Figure 4.19 because the two circuits are equivalent.
Thus,

$$
R_{T H}=R_{i n}
$$

Figure 4.21

- Two cases must be considered (in finding for $R_{T H}$):

Case 1:

- If the network has no dependent sources, we turn off all independent sources.
- $R_{T H}$ is the input resistance of the network looking between terminals a and b as shown in Figure 4.21.

Case 2:

- If the network has dependent sources, we turn off all independent sources.
- Apply a voltage source v_{0} at terminals a and b and determine the resulting current i_{0}
- Then, $R_{T H}=\frac{v_{0}}{i_{0}}$

$$
R_{\mathrm{Th}}=\frac{v_{o}}{i_{o}}
$$

Figure 4.22

- Alternatively, we may insert a current source i_{0} at the terminal a and b and find the terminal voltage ν_{0}.
- Again, $R_{T H}=\frac{v_{0}}{i_{0}}$

$$
R_{\mathrm{m}}=\frac{v_{O}}{i_{O}}
$$

Figure 4.23

- Any value of v_{0} and i_{0} may be assumed.
- Consider the circuit as shown in Figure 4.24.

Figure 4.24

- After applying Thevenin's Theorem,

Figure 4.25
Thus,

$$
\begin{aligned}
& I_{L}=\frac{V_{T H}}{R_{T H}+R_{L}} \\
& V_{L}=R_{L} I_{L}=\frac{R_{L}}{R_{T H}+R_{L}} V_{T H}
\end{aligned}
$$

- Example 1:

Find the Thevenin equivalent circuit of the circuit as shown in Figure 4.26 to the left of the terminal $a-b$. Then find the current through $R_{L}=6 \Omega$.

Figure 4.26

To find $R_{T H}$, turn off 32 V volatge source and 2 A current source,

Figure 4.27

$$
R_{T H}=4 \| 12+1=\frac{4 \times 12}{16}+1=4 \Omega
$$

To find $V_{T H}$,

Figure 4.28
Applying mesh analysis,
Loop 1:

$$
-32+4 i_{1}+12\left(i_{1}-i_{2}\right)=0
$$

Loop 2:

$$
i_{2}=-2 \mathrm{~A}
$$

Thus,

$$
\begin{aligned}
& i_{1}=0.5 \mathrm{~A} \\
& \therefore V_{T H}=12\left(i_{1}-i_{2}\right)=30 \mathrm{~V}
\end{aligned}
$$

When $\mathrm{R}_{\mathrm{L}}=6 \Omega$,

$$
I_{L}=\frac{V_{T H}}{R_{T H}+R_{L}}=\frac{30}{10}=3 \mathrm{~A}
$$

- Example 2:

Find the Thevenin equivalent circuit of the circuit as shown in Figure 4.29

Figure 4.29

To find $R_{T H}$, set the independent source equal to zero and leave the dependent source alone.
Excite the network with a voltage source v_{0} connected to the terminal and let $v_{0}=1 \mathrm{~V}$.
Find i_{0} and then obtain $R_{T H}=1 / i_{0}$.

Figure 4.30

Loop 1: KVL

$$
\begin{aligned}
& -2 v_{x}+2\left(i_{1}-i_{2}\right)=0 \\
& v_{x}=i_{1}-i_{2}
\end{aligned}
$$

From Loop 2:

$$
\begin{aligned}
& -4 i_{2}=v_{x}=i_{1}-i_{2} \\
& \therefore i_{1}=-3 i_{2}
\end{aligned}
$$

Loop 2:

$$
4 i_{2}+2\left(i_{2}-i_{1}\right)+6\left(i_{2}-i_{3}\right)=0
$$

Loop 3:

$$
6\left(i_{3}-i_{2}\right)+2 i_{3}+1=0
$$

Solving these equations gives

$$
i_{3}=-\frac{1}{6} \mathrm{~A}
$$

But

$$
i_{0}=-i_{3}=1 / 6 \mathrm{~A} .
$$

Hence,

$$
R_{T H}=\frac{v_{0}}{i_{0}}=6 \Omega
$$

To get $V_{T H}$,

Figure 4.31
Applying mesh analysis:

$$
\begin{aligned}
& i_{1}=5 \mathrm{~A} \\
& -2 v_{x}+2\left(i_{3}-i_{2}\right)=0 \\
& \therefore v_{x}=i_{3}-i_{2} \\
& 4\left(i_{2}-i_{1}\right)+2\left(i_{2}-i_{3}\right)+6 i_{2}=0 \\
& 12 i_{2}-4 i_{1}-2 i_{3}=0
\end{aligned}
$$

But,

$$
4\left(i_{1}-i_{2}\right)=v_{x}
$$

Solving those equations gives:

$$
i_{2}=10 / 3 \mathrm{~A}
$$

Thus,

$$
V_{T H}=v_{o c}=6 i_{2}=20 \mathrm{~V}
$$

4.5 Norton Theorem

- Definition:

Norton's Theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_{N} in parallel with a resistor R_{N}, where I_{N} is the short-circuit current through the terminals and R_{N} is the input or equivalent resistance at the terminals when the independent sources are turned off.

- Thus, the circuit in Figure 4.32 can be replaced by circuit in Figure 4.33.

Figure 4.32

Figure 4.33

- The procedure to find R_{N} is the same way we find $R_{T H}$.

$$
R_{N}=R_{T H}
$$

- To find the Norton current, I_{N} we determine the short-circuit current flowing from terminal a to b (refer to Figure 4.32 and 4.33)

$$
I_{N}=i_{s c}
$$

Figure 4.34

- Dependent and independent sources are treated the same way as in Thevenin's theorem.
- The relationship between Thevenin's and Norton's theorems:

$$
I_{N}=\frac{V_{T H}}{R_{T H}}
$$

- From the relationship, to determine the Thevenin and Norton equivalent circuit requires:
(i) The open-circuit voltage $v_{o c}$ across terminals a and b.
(ii) The short-circuit current $i_{s c}$ at terminals a and b.
(iii) The equivalent or input resistance $R_{i n}$ at the terminals a and b when all independent sources are turned off.
- As conclusion:

$$
\begin{aligned}
& V_{T H}=v_{o c} \\
& I_{N}=i_{s c} \\
& R_{T H}=\frac{v_{o c}}{i_{s c}}=R_{N}
\end{aligned}
$$

- Example:

Find the Norton equivalent circuit of the circuit in Figure 4.35

Figure 4.35

To find R_{N}, set the independent sources equal to zero,

Figure 4.36

$$
R_{N}=5 \|(8+4+8)=4 \Omega
$$

To find I_{N}, we short-circuit terminals a and b,

Figure 4.37

$$
\begin{aligned}
& i_{1}=2 \mathrm{~A} \\
& 20 i_{2}-4 i_{1}-12=0 \\
& \therefore i_{2}=1 A=i_{s c}=I_{N}
\end{aligned}
$$

- Example 2:

Using Norton's theorem, find R_{N} and I_{N} of the circuit in Figure 4.38 at terminals a and b.

Figure 4.38

To find R_{N}, set the independent voltage source equal to zero and connect a voltage source of $v_{0}=1 \mathrm{~V}$ (or any inspecified voltage v_{0}).

Figure 4.39

$$
i_{x}=0 \mathrm{~A}
$$

At node a,

$$
\begin{aligned}
& i_{0}=5 / 1=5 \mathrm{~A} \\
& R_{N}=\frac{v_{0}}{i_{0}}=\frac{1}{5}=0.2 \Omega
\end{aligned}
$$

To find I_{N}, we short-circuit terminals a and b, and find the current $i_{s c}$,

Figure 4.38
Note: All elements are in parallel.

$$
i_{x}=\frac{10}{4}=2.5 \mathrm{~A}
$$

At node a, KCL gives

$$
i_{s c}=I_{N}=\frac{10}{5}+2 i_{x}=2+2(2.5)=7 \mathrm{~A}
$$

4.6 Maximum Power Transfer

- The Thevenin equivalent is useful in finding the maximum power a linear circuit can deliver to a load.
- Consider a Thevenin equivalent circuit as shown in Figure 4.41

Figure 4.41
The power delivered to the load is,

$$
p=i^{2} R_{L}=\left(\frac{V_{T H}}{R_{T H}+R_{L}}\right)^{2} R_{L}
$$

- The $V_{T H}$ and $R_{T H}$ are fixed.
- By varying the load resistance R_{L}, the power delivered to the load varies

Figure 4.42

- From Figure 4.42 , to find the maximum power, we differentiate p with respect to R_{L} and set the result equal to zero,

$$
\begin{aligned}
\frac{d p}{d R_{L}} & =V_{T H}^{2}\left[\frac{\left(R_{T H}+R_{L}\right)^{2}-2 R_{L}\left(R_{T H}+R_{L}\right)}{\left(R_{T H}+R_{L}\right)^{4}}\right]=0 \\
& =V_{T H}^{2}\left[\frac{\left(R_{T H}+R_{L}-2 R_{L}\right)}{\left(R_{T H}+R_{L}\right)^{3}}\right]=0
\end{aligned}
$$

This implies that,

$$
0=\left(R_{T H}+R_{L}-2 R_{L}\right)=R_{T H}-R_{L}
$$

Thus,
$R_{L}=R_{T H}$ for maximum power delivered
$\therefore p_{\max }=\frac{V_{T H}^{2}}{4 R_{T H}}$

